Exercise 16

Find an equation for the plane that passes through
(a) $(0,0,0),(2,0,-1)$, and $(0,4,-3)$.
(b) $(1,2,0),(0,1,-2)$, and $(4,0,1)$.
(c) $(2,-1,3),(0,0,5)$, and $(5,7,-1)$.

Solution

A particular plane is specified by a normal vector \mathbf{n} and a point with position vector \mathbf{r}_{0} that lies in it. The equation for this plane comes from the fact that the dot product of \mathbf{n} with any vector in the plane is zero.

$$
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0
$$

Part (a)
Let \mathbf{r}_{1} and \mathbf{r}_{2} be the displacement vectors from $(0,0,0)$ to $(2,0,-1)$ and $(0,4,-3)$, respectively.

$$
\begin{aligned}
& \mathbf{r}_{1}=(2,0,-1)-(0,0,0)=(2,0,-1) \\
& \mathbf{r}_{2}=(0,4,-3)-(0,0,0)=(0,4,-3)
\end{aligned}
$$

Take the cross product of these two to obtain a vector normal to the plane that they reside in.

$$
\mathbf{n}=\mathbf{r}_{1} \times \mathbf{r}_{2}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
2 & 0 & -1 \\
0 & 4 & -3
\end{array}\right|=(0+4) \hat{\mathbf{x}}-(-6-0) \hat{\mathbf{y}}+(8-0) \hat{\mathbf{z}}=4 \hat{\mathbf{x}}+6 \hat{\mathbf{y}}+8 \hat{\mathbf{z}}=(4,6,8)
$$

Therefore, the equation for the plane is

$$
\begin{gathered}
(4,6,8) \cdot(x-0, y-0, z-0)=0 \\
4(x-0)+6(y-0)+8(z-0)=0 \\
4 x+6 y+8 z=0 \\
2 x+3 y+4 z=0 .
\end{gathered}
$$

Part (b)

Let \mathbf{r}_{1} and \mathbf{r}_{2} be the displacement vectors from $(1,2,0)$ to $(0,1,-2)$ and $(4,0,1)$, respectively.

$$
\begin{aligned}
& \mathbf{r}_{1}=(0,1,-2)-(1,2,0)=(-1,-1,-2) \\
& \mathbf{r}_{2}=(4,0,1)-(1,2,0)=(3,-2,1)
\end{aligned}
$$

Take the cross product of these two to obtain a vector normal to the plane that they reside in.
$\mathbf{n}=\mathbf{r}_{1} \times \mathbf{r}_{2}=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ -1 & -1 & -2 \\ 3 & -2 & 1\end{array}\right|=(-1-4) \hat{\mathbf{x}}-(-1+6) \hat{\mathbf{y}}+(2+3) \hat{\mathbf{z}}=-5 \hat{\mathbf{x}}-5 \hat{\mathbf{y}}+5 \hat{\mathbf{z}}=(-5,-5,5)$

Therefore, the equation for the plane is

$$
\begin{gathered}
(-5,-5,5) \cdot(x-1, y-2, z-0)=0 \\
-5(x-1)-5(y-2)+5(z-0)=0 \\
-5 x+5-5 y+10+5 z=0 \\
-5 x-5 y+5 z=-15 \\
x+y-z=3 .
\end{gathered}
$$

Part (c)

Let \mathbf{r}_{1} and \mathbf{r}_{2} be the displacement vectors from $(0,0,5)$ to $(2,-1,3)$ and $(5,7,-1)$, respectively.

$$
\begin{aligned}
\mathbf{r}_{1} & =(2,-1,3)-(0,0,5) \\
\mathbf{r}_{2} & =(5,7,-1,-2)-(0,0,5)
\end{aligned}=(5,7,-6)
$$

Take the cross product of these two to obtain a vector normal to the plane that they reside in.
$\mathbf{n}=\mathbf{r}_{1} \times \mathbf{r}_{2}=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ 2 & -1 & -2 \\ 5 & 7 & -6\end{array}\right|=(6+14) \hat{\mathbf{x}}-(-12+10) \hat{\mathbf{y}}+(14+5) \hat{\mathbf{z}}=20 \hat{\mathbf{x}}+2 \hat{\mathbf{y}}+19 \hat{\mathbf{z}}=(20,2,19)$
Therefore, the equation for the plane is

$$
\begin{gathered}
(20,2,19) \cdot(x-0, y-0, z-5)=0 \\
20(x-0)+2(y-0)+19(z-5)=0 \\
20 x+2 y+19 z-95=0 \\
20 x+2 y+19 z=95 .
\end{gathered}
$$

